Blind Application of Developed Smart Vibration-Based Machine Learning (SVML) Model for Machine Faults Diagnosis to Different Machine Conditions

Author:

Espinoza Sepúlveda Natalia F.,Sinha Jyoti K.

Abstract

Abstract Purpose The development and application of intelligent models to perform vibration-based condition monitoring in industry seems to be receiving attention in recent years. A number of such research studies using the artificial intelligence, machine learning, pattern recognition, etc., are available in the literature on this topic. These studies essentially used the machine vibration responses with known machine faults to develop smart fault diagnosis models. These models are yet to be tested for all kinds of machine faults and/or different operating conditions. Therefore, the purpose is to develop a generic machine faults diagnosis model that can be applied blindly to any identical machines with high confidence level in accuracy of the predictions. Methods In this paper, a supervised smart fault diagnosis model is developed. This model is developed using the available measured vibration responses for the different rotor faults simulated on an experimental rotating rig operating at a constant speed. The developed smart vibration-based machine learning (SVML) model is then blindly tested to identify the healthy and faulty conditions of the rig when operating at different speeds. Results and conclusions Several scenarios are proposed and examined during the development of the SVML model. It is observed that scenario of the vibration measurements simultaneously from all bearings from a machine is capable to fully map the machine dynamics in the VML model. Therefore, this developed when applied blindly to the sets of data at a different machine speed, the results are observed to be encouraging. The results clearly show a possibility for a centralised vibration-based condition monitoring (CVCM) model for identical machines operating at different rotating speeds.

Funder

University of Manchester

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3