Two-step vibration-based machine learning model for the fault detection and diagnosis in rotating machine and its blind application

Author:

Espinoza-Sepulveda Natalia1,Sinha Jyoti1ORCID

Affiliation:

1. Dynamics Laboratory, School of Engineering, The University of Manchester, Manchester, UK

Abstract

A robust and reliable condition monitoring and fault diagnosis system is crucial for an efficient operation of industries. Because of the advances in technologies over the past few decades, there is an increased interest in developing intelligent systems to perform tasks that traditionally rely on knowledge, experience and expertise of an individual. It is known that unexpected breakdowns have wide implications in production processes. Thus, it is vital to be able to know the machine condition and detect at the earliest possible stage the defects when they occur. Aiming at an industrial application, in this study, a two-step approach is proposed for the fault detection and diagnosis of rotor-related faults. The implemented algorithm is a pattern recognition supervised artificial neural network, which through information extracted from vibration signals allows one to identify the health status of the machine. In the first step, the model identifies whether the machine is healthy or faulty. This is important information for any industry to operate the machines. Once the machine condition (healthy or faulty) is known and if it is faulty, then only faulty machine parameters are used in the second step to know the specific fault. The model is initially based on existing experimental data, and then, it is further validated with mathematically generated data. The proposed two-step approach model and the trained framework are applied blindly at a different machine speed, where the dynamics of machine is expected to be different. The excellent results obtained suggest this approach as a possibility for industrial application.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3