Learning Extremal Representations with Deep Archetypal Analysis

Author:

Keller Sebastian MathiasORCID,Samarin Maxim,Arend Torres Fabricio,Wieser Mario,Roth Volker

Abstract

AbstractArchetypes represent extreme manifestations of a population with respect to specific characteristic traits or features. In linear feature space, archetypes approximate the data convex hull allowing all data points to be expressed as convex mixtures of archetypes. As mixing of archetypes is performed directly on the input data, linear Archetypal Analysis requires additivity of the input, which is a strong assumption unlikely to hold e.g. in case of image data. To address this problem, we propose learning an appropriate latent feature space while simultaneously identifying suitable archetypes. We thus introduce a generative formulation of the linear archetype model, parameterized by neural networks. By introducing the distance-dependent archetype loss, the linear archetype model can be integrated into the latent space of a deep variational information bottleneck and an optimal representation, together with the archetypes, can be learned end-to-end. Moreover, the information bottleneck framework allows for a natural incorporation of arbitrarily complex side information during training. As a consequence, learned archetypes become easily interpretable as they derive their meaning directly from the included side information. Applicability of the proposed method is demonstrated by exploring archetypes of female facial expressions while using multi-rater based emotion scores of these expressions as side information. A second application illustrates the exploration of the chemical space of small organic molecules. By using different kinds of side information we demonstrate how identified archetypes, along with their interpretation, largely depend on the side information provided.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

National Center of Competence in Research Materials’ Revolution: Computational Design and Discovery of Novel Material

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Reference51 articles.

1. Alemi, A.A., Fischer, I., Dillon, J.V., & Murphy, K. (2016). Deep variational information bottleneck. CoRR arXiv:1612.00410.

2. Anderson, E. (1935). The irises of the gaspe peninsula. Bulletin of the American Iris Society, 59, 2–5.

3. Atkins, P., & de Paula, J. (2010). Atkins’ Physical Chemistry. Oxford: OUP.

4. Bauckhage, C., & Manshaei, K. (2014). Kernel archetypal analysis for clustering web search frequency time series. in 2014 22nd International Conference on Pattern Recognition, (pp. 1544–1549). https://doi.org/10.1109/ICPR.2014.274.

5. Bauckhage, C., Kersting, K., Hoppe, F., & Thurau, C. (2015). Archetypal analysis as an autoencoder. in Workshop New Challenges in Neural Computation 2015, (pp. 8–16). https://www.techfak.uni-bielefeld.de/~fschleif/mlr/mlr_03_2015.pdf.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3