Abstract
AbstractCharacterizing the genetic structure of large cohorts has become increasingly important as genetic studies extend to massive, increasingly diverse biobanks. Popular methods decompose individual genomes into fractional cluster assignments with each cluster representing a vector of DNA variant frequencies. However, with rapidly increasing biobank sizes, these methods have become computationally intractable. Here we present Neural ADMIXTURE, a neural network autoencoder that follows the same modeling assumptions as the current standard algorithm, ADMIXTURE, while reducing the compute time by orders of magnitude surpassing even the fastest alternatives. One month of continuous compute using ADMIXTURE can be reduced to just hours with Neural ADMIXTURE. A multi-head approach allows Neural ADMIXTURE to offer even further acceleration by computing multiple cluster numbers in a single run. Furthermore, the models can be stored, allowing cluster assignment to be performed on new data in linear time without needing to share the training samples.
Funder
U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute
Stanford Institute for Human-Centered Artificial Intelligence
Blond McIndoe Research Foundation
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Computer Science (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献