Sugarcane Biomass Prediction with Multi-Mode Remote Sensing Data Using Deep Archetypal Analysis and Integrated Learning

Author:

Wang Zhuowei,Lu Yusheng,Zhao GenpingORCID,Sun ChuanliangORCID,Zhang Fuhua,He Su

Abstract

The use of multi-mode remote sensing data for biomass prediction is of potential value to aid planting management and yield maximization. In this study, an advanced biomass estimation approach for sugarcane fields is proposed based on multi-source remote sensing data. Since feature interpretability in agricultural data mining is significant, a feature extraction method of deep archetypal analysis (DAA) that has good model interpretability is introduced and aided by principal component analysis (PCA) for feature mining from the multi-mode multispectral and light detection and ranging (LiDAR) remote sensing data pertaining to sugarcane. In addition, an integrated regression model integrating random forest regression, support vector regression, K-nearest neighbor regression and deep network regression is developed after feature extraction by DAA to precisely predict biomass of sugarcane. In this study, the biomass prediction performance achieved using the proposed integrated learning approach is found to be predominantly better than that achieved by using conventional linear methods in all the time periods of plant growth. Of more significance, according to model interpretability of DAA, only a small set of informative features maintaining their physical meanings (four informative spectral indices and four key LiDAR metrics) can be extracted which eliminates the redundancy of multi-mode data and plays a vital role in accurate biomass prediction. Therefore, the findings in this study provide hands-on experience to planters with indications of the key or informative spectral or LiDAR metrics relevant to the biomass to adjust the corresponding planting management design.

Funder

National Natural Science Foundation of Guangdong under Grant

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3