Abstract
AbstractTartrazine (E-102) is one of the most widely used artificial food azo-colors that can be metabolized to highly sensitizing aromatic amines such as sulphanilic acid. These metabolites are oxidized to N-hydroxy derivatives that cause neurotoxicity. Melatonin is a neurohormone. That possesses a free-radical scavenging effect. The present work was mainly designed to evaluate the possible ameliorative role of melatonin against tartrazine induced neurotoxicity in cerebral cortex and cerebellum of male rats. Adult male rats were administered orally with tartrazine (7.5 mg/kg) with or without melatonin (10 mg/kg) daily for four weeks. The data revealed that tartrazine induced redox disruptions as measured by significant (p < 0.05) increased malondialdehyde (MDA) level and inhibition of (GSH) concentration and catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) antioxidant enzyme activities. Besides, brain acetyl cholin (Ach) and gamma-aminobutyric acid (GABA) were elevated while, dopamine (DA) was depleted in trtrazine -treated rats. Moreover, tartrazine caused a significant (p < 0.05) increase in the brain interleukin-6 (IL-6), interleukin-1β (IL-1 β) and tumor necrosis factor-α (TNFα). At the tissue level, tartrazine caused severe histopathological changes in the cerebellum and cerebral cortex of rats. The immunohistochemical results elucidated strong positive expression for Caspase-3 and GFAP and weak immune reaction for BcL2 and synaptophysin in tatrazine- treated rats. The administration of melatonin to tartrazine -administered rats remarkably alleviated all the aforementioned tartrzine-induced effects. It could be concluded that, melatonin has a potent ameliorative effect against tartrazine induced neurotoxicity via the attenuation of oxidative/antioxidative responses.
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,General Medicine,Biochemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献