Author:
Dehghani Reza,Babaali Hamidreza,Zeydalinejad Nejat
Publisher
Springer Science and Business Media LLC
Subject
Water Science and Technology,Renewable Energy, Sustainability and the Environment
Reference37 articles.
1. Adnan RM, Petroselli A, Heddam S, Guimarães Santos CA, Kisi O (2021) Comparison of different methodologies for rainfall–runoff modeling: machine learning vs conceptual approach. Nat Hazards 105:2987–3011. https://doi.org/10.1007/s11069-020-04438-2
2. Alizadeh MJ, Kavianpour MR, Kisi O, Nourani V (2017) A new approach for simulating and forecasting the rainfall-runoff process within the next two months. J Hydrol 548:588–597
3. Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE)—arguments against avoiding RMSE in the literature. Geosci Model Dev 7:1247–1250
4. Dehghani R, Torabi Poudeh H, Younesi H, Shahinejad B (2020a) Daily streamflow prediction using support vector machine-artificial flora (SVM-AF) hybrid model. Acta Geophys 68(6):51–66
5. Dehghani R, Torabi Poudeh H, Younesi H, Shahinejad B (2020b) Forecasting daily river flow using an artificial flora-support vector machine hybrid modeling approach (case study: Karkheh catchment, Iran). Air Soil Water 14:22–35
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献