A Comparative Analysis of Multiple Machine Learning Methods for Flood Routing in the Yangtze River

Author:

Zhou Liwei12ORCID,Kang Ling12

Affiliation:

1. School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

2. Hubei Key Laboratory of Digital Valley Science and Technology, Wuhan 430074, China

Abstract

Obtaining more accurate flood information downstream of a reservoir is crucial for guiding reservoir regulation and reducing the occurrence of flood disasters. In this paper, six popular ML models, including the support vector regression (SVR), Gaussian process regression (GPR), random forest regression (RFR), multilayer perceptron (MLP), long short-term memory (LSTM) and gated recurrent unit (GRU) models, were selected and compared for their effectiveness in flood routing of two complicated reaches located at the upper and middle main stream of the Yangtze River. The results suggested that the performance of the MLP, LSTM and GRU models all gradually improved and then slightly decreased as the time lag increased. Furthermore, the MLP, LSTM and GRU models outperformed the SVR, GPR and RFR models, and the GRU model demonstrated superior performance across a range of efficiency criteria, including mean absolute percentage error (MAPE), root mean square error (RMSE), Nash–Sutcliffe efficiency coefficient (NSE), Taylor skill score (TSS) and Kling–Gupta efficiency (KGE). Specifically, the GRU model achieved reductions in MAPE and RMSE of at least 7.66% and 3.80% in the first case study and reductions of 19.51% and 11.76% in the second case study. The paper indicated that the GRU model was the most appropriate choice for flood routing in the Yangtze River.

Funder

the National Key R&D Program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3