Simulation of wheel and rail profile wear: a review of numerical models

Author:

Bosso N.ORCID,Magelli M.ORCID,Zampieri N.ORCID

Abstract

AbstractThe development of numerical models able to compute the wheel and rail profile wear is essential to improve the scheduling of maintenance operations required to restore the original profile shapes. This work surveys the main numerical models in the literature for the evaluation of the uniform wear of wheel and rail profiles. The standard structure of these tools includes a multibody simulation of the wheel–track coupled dynamics and a wear module implementing an experimental wear law. Therefore, the models are classified according to the strategy adopted for the worn profile update, ranging from models performing a single computation to models based on an online communication between the dynamic and wear modules. Nevertheless, the most common strategy nowadays relies on an iteration of dynamic simulations in which the profiles are left unchanged, with co-simulation techniques often adopted to increase the computational performances. Work is still needed to improve the accuracy of the current models. New experimental campaigns should be carried out to obtain refined wear coefficients and models, while strategies for the evaluation of both longitudinal and transversal wear, also considering the effects of tread braking, should be implemented to obtain accurate damage models.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanical Engineering,Transportation,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3