Affiliation:
1. Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy
Abstract
The tribological properties of steels used to realise railway wheels play a fundamental role in the performances of both vehicle and infrastructure. In particular, the wear process, caused by the wheel–rail interaction, modifies the shape of wheel and rail profiles, changing the performances of the vehicle. For this reason, research institutes and vehicle manufacturers have worked hard to develop predictive tools able to estimate the evolution of the wheel and rail profiles. The efficiency of these tools is strongly influenced by the tribological properties of the materials, i.e., the wear coefficients, which are used as input data. The characterisation of these properties requires specific tools and long-lasting experimental campaigns, which are usually performed under controlled operating conditions, using twin-disc test benches. These devices usually do not consider the real contact conditions in terms of normal load, contact geometry, and slip velocity, since they are equipped with small-size rollers. The paper proposes an innovative 1:5 scaled twin-disc, which allows the reproduction of the real wheel–rail contact conditions, thanks to Pascal’s scaling technique. The testing device allows the reproduction of a wide range of typical operating conditions of railway vehicles, thanks to high-power independent brushless motors, used to actuate the rollers, and an innovative loading system.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献