Rail RCF damage quantification and comparison for different damage models

Author:

Krishna Visakh V.ORCID,Hossein-Nia Saeed,Casanueva Carlos,Stichel Sebastian,Trummer Gerald,Six Klaus

Abstract

AbstractThere are several fatigue-based approaches that estimate the evolution of rolling contact fatigue (RCF) on rails over time and built to be used in tandem with multi-body simulations of vehicle dynamics. However, most of the models are not directly comparable with each other since they are based on different physical models even though they shall predict the same RCF damage at the end. This article studies different approaches to quantifying RCF and puts forward a measure for the degree of agreement between them. The methodological framework studies various steps in the RCF quantification procedure within the context of one another, identifies the ‘primary quantification step’ in each approach and compares results of the fatigue analyses. In addition to this, two quantities—‘similarity’ and ‘correlation’—have been put forward to give an indication of mutual agreement between models. Four widely used surface-based and sub-surface-based fatigue quantification approaches with varying complexities have been studied. Different operational cases corresponding to a metro vehicle operation in Austria have been considered for this study. Results showed that the best possible quantity to compare is the normalized damage increment per loading cycle coming from different approaches. Amongst the methods studied, approaches that included the load distribution step on the contact patch showed higher similarity and correlation in their results. While the different approaches might qualitatively agree on whether contact cases are ‘damaging’ due to RCF, they might not quantitatively correlate with the trends observed for damage increment values.

Funder

H2020 European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanical Engineering,Transportation,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3