Remaining useful life prediction of integrated modular avionics using ensemble enhanced online sequential parallel extreme learning machine
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Link
http://link.springer.com/content/pdf/10.1007/s13042-021-01283-y.pdf
Reference48 articles.
1. Zhou T, Xiong H (2012) Design of energy-efficient hierarchical scheduling for integrated modular avionics systems. Chin J Aeronaut 25:109–114
2. Gao ZH, Ma CB, She ZY, Dong X (2018) An enhanced deep extreme learning machine for integrated modular avionics health state estimation. IEEE Access 6:65813–65823
3. Matos HLV (2018) Model-based specification of integrated modular avionics systems using object-process methodology. In: 2018 IEEE/AIAA 37th digital avionics systems conference, pp 1–8
4. Wang Y, Lei H, Hackett R, Beeby M (2019) Safety assessment process optimization for integrated modular avionics. IEEE Aerosp Electron Syst Mag 34:58–67
5. Zhou Q, Wang J et al (2020) A two-phase multiobjective local search for the device allocation in the distributed integrated modular avionics. IEEE Access 8:1–10
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. RTCA-Net: A New Framework for Monitoring the Wear Condition of Aero Bearing with a Residual Temporal Network under Special Working Conditions and Its Interpretability;Mathematics;2024-08-29
2. A Review on Large-Scale Data Processing with Parallel and Distributed Randomized Extreme Learning Machine Neural Networks;Mathematical and Computational Applications;2024-05-27
3. A comprehensive survey of machine remaining useful life prediction approaches based on pattern recognition: taxonomy and challenges;Measurement Science and Technology;2024-03-01
4. A Review of Remaining Useful Life Prediction Approaches for Mechanical Equipment;IEEE Sensors Journal;2023-12-15
5. Improved Two Stage Generative Adversarial Networks for Adversarial Example Generation with Real Exposure;Recent Advances in Computer Science and Communications;2023-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3