Improved Two Stage Generative Adversarial Networks for Adversarial Example Generation with Real Exposure

Author:

Goyal Priyanka1,Singh Deepesh1

Affiliation:

1. School of ICT, Gautam Buddha University, Greater Noida, India

Abstract

Introduction: Deep neural networks due to their linear nature are sensitive to adversarial examples. They can easily be broken just by a small disturbance to the input data. Some of the existing methods to perform these kinds of attacks are pixel-level perturbation and spatial transformation of images. Method: These methods generate adversarial examples that can be fed to the network for wrong predictions. The drawback that comes with these methods is that they are really slow and computationally expensive. This research work performed a black box attack on the target model classifier by using the generative adversarial networks (GAN) to generate adversarial examples that can fool a classifier model to classify the images as wrong classes. The proposed method used a biased dataset that does not contain any data of the target label to train the first generator Gnorm of the first stage GAN, and after the first training has finished, the second stage generator Gadv, which is a new generator model that does not take random noise as input but the output of the first generator Gnorm. Result: The generated examples have been superimposed with the Gnorm output with a small constant, and then the superimposed data have been fed to the target model classifier to calculate the loss. Some additional losses have been included to constrain the generation from generating target examples. Conclusion: The proposed model has shown a better fidelity score, as evaluated using Fretchet inception distance score (FID), which was up to 42.43 in the first stage and up to 105.65 in the second stage with the attack success rate of up to 99.13%.

Publisher

Bentham Science Publishers Ltd.

Subject

General Computer Science

Reference16 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3