Cancer data classification using binary bat optimization and extreme learning machine with a novel fitness function
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Biomedical Engineering
Link
http://link.springer.com/content/pdf/10.1007/s11517-019-02043-5.pdf
Reference26 articles.
1. Abdullah AS, Ramya C, Priyadharsini V, Reshma C, Selvakumar S (2017) A survey on evolutionary techniques for feature selection. In: 2017 conference on emerging devices and smart systems (ICEDSS). IEEE, pp 58–62
2. Andaru W, Syarif I, Barakbah AR (2017) Feature selection software development using artificial bee colony on dna microarray data. In: 2017 international electronics symposium on knowledge creation and intelligent computing (IES-KCIC). IEEE, pp 6– 11
3. Banka H, Dara S (2012) Feature selection and classification for gene expression data using evolutionary computation. In: 2012 23rd international workshop on database and expert systems applications (DEXA). IEEE, pp 185–189
4. Chao S, Lihui C (2004) High dimensional gene expression data dimension reduction. In: 2004 IEEE conference on cybernetics and intelligent systems. IEEE, vol 1, pp 451–455
5. Chuang LY, Chang HW, Tu CJ, Yang CH (2008) Improved binary PSO for feature selection using gene expression data. Comput Biol Chem 32(1):29–38
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Pathological mechanisms of cold and mechanical stress in modulating cancer progression;Human Cell;2024-03-27
2. A Feature Selection Method Based on Graph Theory for Cancer Classification;Combinatorial Chemistry & High Throughput Screening;2024-03
3. Accurate analysis for univariate-based filter methods for microarray data classification;Journal of Algorithms & Computational Technology;2024-01
4. Optimized number of bats of binary bat algorithm for feature selection;AIP Conference Proceedings;2024
5. Cancer gene selection with adaptive optimization spiking neural P systems and hybrid classifiers;Journal of Membrane Computing;2023-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3