Accurate analysis for univariate-based filter methods for microarray data classification

Author:

Rebbah Fatima Ezzahra1ORCID,Chamlal Hasna1,Ouaderhman Tayeb1

Affiliation:

1. Fundamental and Applied Mathematics Laboratory, Department of Mathematics and Computer Sciences, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, Morocco

Abstract

Microarray expression datasets generate a huge number of genes, but only a few genes provide information about cancer diseases. In this context, feature selection approaches have been developed to deal with this problem. Filter-based methods, in particular, select the relevant genes and remove the irrelevant ones using different evaluation metrics. In this study, we shed light on nine univariate filter methods. Three categories of filter methods were investigated using eight microarray datasets, including binary and multi-class samples. The support vector machine and Naive Bayes classifiers were used to assess classification accuracy. Different comparison methods were used to assist the researchers in visualizing the performance of each studied filter. Precisely, statistical tests were applied in terms of classification accuracy, and the feature ranking similarity of the filter methods was studied based on a rank correlation measure.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3