A Feature Selection Method Based on Graph Theory for Cancer Classification

Author:

Zhou Kai1,Yin Zhixiang1,Gu Jiaying1,Zeng Zhiliang1

Affiliation:

1. School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai, 201620, China

Abstract

Objective: Gene expression profile data is a good data source for people to study tumors, but gene expression data has the characteristics of high dimension and redundancy. Therefore, gene selection is a very important step in microarray data classification. Method: In this paper, a feature selection method based on the maximum mutual information coefficient and graph theory is proposed. Each feature of gene expression data is treated as a vertex of the graph, and the maximum mutual information coefficient between genes is used to measure the relationship between the vertices to construct an undirected graph, and then the core and coritivity theory is used to determine the feature subset of gene data. Results: In this work, we used three different classification models and three different evaluation metrics such as accuracy, F1-Score, and AUC to evaluate the classification performance to avoid reliance on any one classifier or evaluation metric. The experimental results on six different types of genetic data show that our proposed algorithm has high accuracy and robustness compared to other advanced feature selection methods. Conclusion: In this method, the importance and correlation of features are considered at the same time, and the problem of gene selection in microarray data classification is solved.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Combinatorial Study of Chemical Graphs;Combinatorial Chemistry & High Throughput Screening;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3