Analysis of manufacturing and material parameters in 3D-printed polylactic acid (PLA) parts filled with glass powder: mechanical, economic, and environmental assessment

Author:

Castanon-Jano LauraORCID,Palomera-Obregon Paula,Blanco-Fernandez Elena,Indacoechea-Vega Irune

Abstract

AbstractThis study investigates the influence of the addition of glass powder, nozzle size, and infill density on the mechanical properties of 3D-printed polylactic acid (PLA) pieces. To do so, a factorial design of experiments was accomplished. The specimens were tested under tensile and bending conditions. Regression equations were extracted from the maximal strength, strain at maximal strength and modulus, and an analysis of the significance of the terms was carried out. All the factors influence the output variables, independently and in combination. As for the environmental impact, a cradle-to-gate life cycle analysis (LCA) of the printing material with different glass powder additions, including the manufacturing process and transportation of the raw materials, was performed. Additionally, a cost assessment of each alternative was calculated for each case. Since the concurrence of mechanical, environmental, and cost performance is needed to enter a new product in the industry, a multicriteria decision-making analysis was performed to select the best combination. The criteria considered were the material and printing costs and the environmental impact, all normalized with maximal strength. Two different alternatives were found to be the best solution depending on the strength selected. Both of them were printed using a 1.2-mm nozzle with 100% infill and different glass percentages.

Funder

Ministerio de Ciencia e Innovación

Universidad de Cantabria

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3