Enhancing the Weld Quality of Polylactic Acid Biomedical Materials Using Rotary Friction Welding

Author:

Kuo Chil-Chyuan1234ORCID,Liang Hua-Xhin1,Huang Song-Hua5,Tseng Shih-Feng6ORCID

Affiliation:

1. Department of Mechanical Engineering, Ming Chi University of Technology, No. 84, Gungjuan Road, New Taipei City 24301, Taiwan

2. Research Center for Intelligent Medical Devices, Ming Chi University of Technology, No. 84, Gungjuan Road, New Taipei City 24301, Taiwan

3. Department of Mechanical Engineering, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan

4. Center for Reliability Engineering, Ming Chi University of Technology, No. 84, Gungjuan Road, Taishan District, New Taipei City 24301, Taiwan

5. Li-Yin Technology Co., Ltd., No. 37, Lane 151, Section 1, Zhongxing Road, Wugu District, New Taipei City 241, Taiwan

6. Department of Mechanical Engineering, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Da’an Dist., Taipei City 106344, Taiwan

Abstract

Polylactic acid (PLA) stands out as a biomaterial with immense potential, primarily owing to its innate biodegradability. Conventional methods for manufacturing PLA encompass injection molding or additive manufacturing (AM). Yet, the fabrication of sizable medical devices often necessitates fragmenting them into multiple components for printing, subsequently requiring reassembly to accommodate the constraints posed by the dimensions of the AM platform. Typically, laboratories resort to employing nuts and bolts for the assembly of printed components into expansive medical devices. Nonetheless, this conventional approach of jointing is susceptible to the inherent risk of bolts and nuts loosening or dislodging amid the reciprocating movements inherent to sizable medical apparatus. Hence, investigation into the joining techniques for integrating printed components into expansive medical devices has emerged as a critical focal point within the realm of research. The main objective is to enhance the joint strength of PLA polymer rods using rotary friction welding (RFW). The mean bending strength of welded components, fabricated under seven distinct rotational speeds, surpasses that of the underlying PLA substrate material. The average bending strength improvement rate of welding parts fabricated by RFW with three-stage transformation to 4000 rpm is about 41.94% compared with the average bending strength of PLA base material. The average surface hardness of the weld interface is about 1.25 to 3.80% higher than the average surface hardness of the PLA base material. The average surface hardness of the weld interface performed by RFW with variable rotational speed is higher than the average surface hardness of the weld interface performed at a fixed rotating friction speed. The temperature rise rate and maximum temperature recorded during RFW in the X-axis of the CNC turning machine at the outer edge of the welding part surpassed those observed in the internal temperature of the welding part. Remarkably, the proposed method in this study complies with the Sustainable Development Goals due to its high energy efficiency and low environmental pollution.

Funder

Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3