Enhancing sustainability in polymer 3D printing via fusion filament fabrication through integration of by-products in powder form: mechanical and thermal characterization

Author:

Castanon-Jano LauraORCID,Palomera-Obregon Paula,Lázaro Mariano,Blanco-Fernandez Elena,Blasón Sergio

Abstract

AbstractFFF (fused filament fabrication) is a type of 3D printing that utilizes filament for part creation. This study proposes using by-products or waste to replace part of the plastic in FFF filament, reducing environmental impact. The aim is to maintain a simple manufacturing process involving extrusion on a single-screw desktop machine followed by printing. The plastic matrix comprises polylactic acid (PLA) and polyethylene glycol (PETG), with added powdered by-products: seashells, car glass and mill scale (metal). Additives will be incorporated at 10% and 20% by weight, with two grain sizes: up to 0.09 mm and up to 0.018 mm. Mechanical tests (tensile, flexural and hardness) and thermal characterization tests will be conducted. Findings suggest adding 10%w powder of any variety to PETG increases tensile strength up to 48%, with metal powder (mill scale) showing the highest enhancement, even at 20%w, resulting in a 41% increase. Conversely, adding powder to PLA worsens mechanical properties without stiffening the material; instead, the elastic modulus decreases. Metal grain size has minimal impact, with grain sizes lower than 0.09 mm optimal for PLA. Thermal conductivity in polymers blended with powder additives is lower than in virgin polymers, likely due to air void formation, supported by density and microscopic evaluations. This research underscores the potential of utilizing waste materials with a simple FFF filament production to enhance sustainability in 3D printing practices.

Funder

Universidad de Cantabria

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3