Pleiotropic function of the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE gene TaSPL14 in wheat plant architecture

Author:

Cao Jie,Liu Kaiye,Song Wanjun,Zhang Jianing,Yao Yingyin,Xin Mingming,Hu Zhaorong,Peng Huiru,Ni Zhongfu,Sun Qixin,Du JinkunORCID

Abstract

Abstract Main conclusion The function of SQUAMOSA PROMOTER-BINDING PROTEIN-BOX gene TaSPL14 in wheat is similar to that of OsSPL14 in rice in regulating plant height, panicle length, spikelet number, and thousand-grain weight of wheat, but differs during tiller development. TaSPL14 may regulate spike development via ethylene-response gene EIN3-LIKE 1 (TaEIL1), ETHYLENE-RESPONSIVE TRANSCRIPTION FACTOR 2.11 (TaRAP2.11), and ETHYLENE-RESPONSIVE TRANSCRIPTION FACTOR 1 (TaERF1), but not DENSE AND ERECT PANICLE 1 (TaDEP1) in wheat. Abstract The SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE gene OsSPL14 from rice is considered to be a major determinant of ideal plant architecture consisting of few unproductive tillers, more grains per spike, and high resistance of stems to lodging. However, the function of its orthologous gene, TaSPL14, in wheat is unknown. Here, we reported the functional similarities and differences between TaSPL14 and OsSPL14. Similar to OsSPL14 knock-outs in rice, wheat TaSPL14 knock-out plants exhibited decreased plant height, panicle length, spikelet number, and thousand-grain weight. In contrast to OsSPL14, however, TaSPL14 did not affect tiller number. Transcriptome analysis revealed that the expression of genes related to ethylene response was significantly decreased in young spikes of TaSPL14 knock-out lines as compared with wild type. TaSPL14 directly binds to the promoters of the ethylene-response genes TaEIL1, TaRAP2.11, and TaERF1, and promotes their expression, suggesting that TaSPL14 might regulate wheat spike development via the ethylene-response pathway. The elucidation of TaSPL14 will contribute to understanding of the molecular mechanisms that underlie wheat plant architecture.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3