1. Adjei, S., Selent, D., Heffernan, N., Pardos, Z., Broaddus, A., & Kingston, N. (2014). Refining learning maps with data fitting techniques: Searching for better fitting learning maps. In J. Stamper, Z. Pardos, M. Mavrikis & B. M. McLaren (Eds.) Proceedings of the 7th International Conference on Educational Data Mining (pp. 413–414). London.
2. Barrett, J., Clements, D., Sarama, J., Cullen, C., McCool, J., Witkowski-Rumsey, C., & Klanderman, D. (2012). Evaluating and improving a learning trajectory for linear measurement in elementary grades 2 and 3: A longitudinal study. Mathematical Thinking and Learning, 14(1), 28–54.
3. Battista, M. T. (2011). Conceptualizations and issues related to learning progressions, learning trajectories, and levels of sophistication. The Mathematics Enthusiast, 8(3), 507–570.
4. Black, P., Harrison, C., & Lee, C. (2004). Working inside the black box: Assessment for learning in the classroom. London: Granada Learning.
5. Boester, T., & Lehrer, R. (2008). Visualizing algebraic reasoning. In J. J. Kaput, D. W. Carraher & M. L. Blanton (Eds.), Algebra in the early grades (pp. 211–234). New York: Routledge.