Finite Element Optimization of Deep Drawing Process Forming Parameters for Magnesium Alloys
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Materials Science
Link
http://link.springer.com/content/pdf/10.1007/s12289-010-0716-1.pdf
Reference13 articles.
1. B.L. Mordike, T. Ebert. Magnesium properties—application— potential. In the Journal Materials Science and Engineering, pages 37–45, 2001.
2. H. Furuya, N. Kogiso, S. Matunaga, K. Senda. Applications of magnesium-alloys for aerospace structure systems. In the Journal of Materials Science Forum, Vol. 350–351, pages 41–348, 2000.
3. H. Takuda, T. Yoshii, N. Hatta. Finite Element analysis of the formability of a magnesium based alloy AZ31 sheet. In the Journal of Materials Processing Technology, vol. 89–90, pages 135–140, 1999.
4. Fuh- Kuo Chen, Tying – Bin Huang, Chih – Kun Chang. Deep drawing of square cups with magnesium alloy AZ31 sheets. In the International Journal of Machine tools and Manufacture, Vol. 43, pages 1153–1559, 2003.
5. Qun–Feng Chnag, Da–Yong Li, Ying–Hong Peng, Xiao–Qin Zeng. Experimental and numerical study of warm deep drawing of AZ31 magnesium alloy sheet. In the International Journal of Machine tools and Manufacture, Vol. 47, pages 436–443, 2007.
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Hybrid models for optimization of deep-drawn cups deploying scaling laws: a case study for sustainable development;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2024-03-15
2. Experimental Study and Neural Network Model to Predict Formability of Magnesium Alloy AZ31B;E3S Web of Conferences;2024
3. Experimental study and machine learning model to predict formability of magnesium alloy sheet;F1000Research;2022-09-29
4. The Effect of Elevated Temperature on the Drawability of a Circular Deep Drawn Metal Cup;Metals;2019-12-03
5. Experimental and numerical investigation of the deep drawing process for an automobile panel and prediction of appropriate amount of parameters by multi-layer neural network;Journal of Theoretical and Applied Mechanics;2017-04-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3