Abstract
Background: Magnesium alloy is not only light in weight but also possesses moderate strength. Magnesium AZ31-H24 alloy sheet has many applications in the automotive and aerospace industries. Experimental stretch forming tests are performed on this sheet to measure the material’s formability by constructing forming limit diagrams. Methods: Several tests of Nakazima were carried out on rectangular samples at 24, 250, 350°C and 0.01, 0.001 mm/s using a hemispherical punch. The work done to predict the formability of magnesium alloys has not been recorded in recent literature on machine learning models. Hence, the researchers of this article choose to explore the same and build three models to predict the formability of magnesium alloy through Random Forest algorithm, Extreme Gradient Boosting, and Multiple linear Regression. Results: The Random Forest showed high accuracy of 96% in prediction. Conclusions: It is concluded that the need for physical experiments can be greatly minimized in formability studies by using machine learning concepts.
Subject
General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献