Experimental Study and Neural Network Model to Predict Formability of Magnesium Alloy AZ31B

Author:

Balaji Viswanadhapalli,Naga Sai Reddy Elavala,Adithya Makam,Venkata Ganga Prasanna Kumar Reddy Mallu,Krishna Chythanya Nagaraju

Abstract

Magnesium alloy is an emerging smart metal used in various industries like automotive and aerospace industry, due to their lightweight and excellent strength-to-weight ratio. Formability, a critical factor in manufacturing processes, determines the alloy’s ability to undergo deformation without fracture or defects. Fuel economy and environmental conservatives are the key desirable factors in selection of magnesium alloy sheets. Magnesium alloy sheets have low formability at room temperature due to their hexagonal closed-packed microstructures. As the magnesium’s formability at room temperature is considerably low, stretch forming tests are conducted at moderate temperatures. For this purpose, commercially available AZ31B magnesium alloy sheet of 1.1mm thickness has been used and tested at room temperature, 25 degree to within medium temperatures range and at a higher strain rate of 0.01/s. The main objective of an experimental study to predict the formability of magnesium alloy sheets is to gather data through controlled tests and measurements. This data and Forming Limit Diagram (FLD) can be used to analyse the formability of material, it defines failure criteria. On the other hand, using a neural network to predict formability involves training the network on the collected experimental data. Once trained, the neural network can predict the formability of new magnesium alloy sheets based on their characteristics, offering a faster and potentially more accurate prediction method compared to traditional models. This work explores into the realm of regression modelling utilizing neural networks, a powerful subset of machine learning techniques. It begins with a discussion on the setup of machine learning models, emphasizing the crucial steps involved in data preprocessing, model selection, and evaluation.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3