Author:
Chen Fang,Ouyang Huajiang,Wang Xiaocui
Abstract
AbstractFor years, friction-induced vibration and noise (FIVN) has puzzled many researchers in academia and industry. Several mechanisms have been proposed for explaining its occurrence and quantifying its frequencies, notably for automotive brake squeal, clutch squeal, and even rail corrugation. However, due to the complex and complicated nature of FIVN, there is not yet one fundamental mechanism that can explain all phenomena of FIVN. Based on experimental results obtained on a simple test structure and corresponding numerical validation using both complex eigenvalue analysis (CEA) and transient dynamic analysis (TDA), this study attempts to propose a new fundamental mechanism for FIVN, which is the repeated cycles of partial detachment and then reattachment of the contact surfaces. Since friction is ubiquitous and FIVN is very common, the insight into FIVN reported in this paper is highly significant and will help establish effective means to control FIVN in engineering and daily life.
Publisher
Springer Science and Business Media LLC
Subject
Surfaces, Coatings and Films,Mechanical Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献