Suppressing friction-induced stick-slip vibration through a linear PZT-based absorber and energy harvester

Author:

Chen Wei,Mo Jiliang,Ouyang Huajiang,Zhao Jing,Xiang Zaiyu

Abstract

AbstractIn this paper, a PZT (lead zirconate titanate)-based absorber and energy harvester (PAEH) is used for passive control of friction-induced stick-slip vibration in a friction system. Its stability condition coupled with PAEH is analytically derived, whose efficiency is then demonstrated by numerical simulation. The results show that the structural parameters of the PAEH can significantly affect the system stability, which increases with the mass ratio between the PAEH and the primary system, but first increases and then decreases with the natural frequency ratio between the PAEH and the primary system. The impacts of the electric parameters of the PAEH on the system stability are found to be insignificant. In addition, the PAEH can effectively suppress the stick-slip limit cycle magnitude in a wide working parameter range; however, it does not function well for friction systems in all the working conditions. The stick-slip vibration amplitude can be increased in the case of a large loading (normal) force. Finally, an experiment on a tribo-dynamometer validates the findings of the theoretical study, in which the vibration reduction and energy harvesting performance of the PAEH is fully demonstrated.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3