Numerical prediction of the frictional losses in sliding bearings during start-stop operation

Author:

König Florian,Sous Christopher,Jacobs Georg

Abstract

AbstractWith the increased use of automotive engine start-stop systems, the numerical prediction and reduction of frictional losses in sliding bearings during starting and stopping procedures has become an important issue. In engineering practice, numerical simulations of sliding bearings in automotive engines are performed with statistical asperity contact models with empirical values for the necessary surface parameters. The aim of this study is to elucidate the applicability of these approaches for the prediction of friction in sliding bearings subjected to start-stop operation. For this purpose, the friction performance of sliding bearings was investigated in experiments on a test rig and in transient mixed elasto-hydrodynamic simulations in a multi-body simulation environment (mixed-EHL/MBS). In mixed-EHL/MBS, the extended Reynold’s equation with flow factors according to Patir and Cheng has been combined on the one hand with the statistical asperity contact model according to Greenwood and Tripp and on the other hand with the deterministic asperity contact model according to Herbst. The detailed comparison of simulation and experimental results clarifies that the application of statistical asperity contact models with empirical values of the necessary inputs leads to large deviations between experiment and simulation. The actual distribution and position of surface roughness, as used in deterministic contact modelling, is necessary for a reliable prediction of the frictional losses in sliding bearings during start-stop operation.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3