Vibration-based and computer vision-aided nondestructive health condition evaluation of rail track structures

Author:

Wang Shaohua,Zheng Hao,Tang LihuaORCID,Li Zhaoyu,Zhao Renda,Lu Yuqian,Aw Kean C.

Abstract

AbstractIn railway engineering, monitoring the health condition of rail track structures is crucial to prevent abnormal vibration issues of the wheel–rail system. To address the problem of low efficiency of traditional nondestructive testing methods, this work investigates the feasibility of the computer vision-aided health condition monitoring approach for track structures based on vibration signals. The proposed method eliminates the tedious and complicated data pre-processing including signal mapping and noise reduction, which can achieve robust signal description using numerous redundant features. First, the method converts the raw wheel–rail vibration signals directly into two-dimensional grayscale images, followed by image feature extraction using the FAST-Unoriented-SIFT algorithm. Subsequently, Visual Bag-of-Words (VBoW) model is established based on the image features, where the optimal parameter selection analysis is implemented based on fourfold cross-validation by considering both recognition accuracy and stability. Finally, the Euclidean distance between word frequency vectors of testing set and the codebook vectors of training set is compared to recognize the health condition of track structures. For the three health conditions of track structures analyzed in this paper, the overall recognition rate could reach 96.7%. The results demonstrate that the proposed method performs higher recognition accuracy and lower bias with strong time-varying and random vibration signals, which has promising application prospect in early-stage structural defect detection.

Funder

Sichuan Province Science and Technology Support Program

Catalyst Seeding General Grant

University of Auckland

Publisher

Springer Science and Business Media LLC

Subject

Safety, Risk, Reliability and Quality,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3