Optimal tuning of three deep learning methods with signal processing and anomaly detection for multi-class damage detection of a large-scale bridge

Author:

Doroudi Rouzbeh1ORCID,Lavassani Seyed Hossein Hosseini1ORCID,Shahrouzi Mohsen1

Affiliation:

1. Civil Engineering Department, Faculty of Engineering, Kharazmi University, Tehran, Iran

Abstract

Long-span bridges play a crucial role in urbanization, connecting communities across vast obstacles. Structural health monitoring techniques have been deployed on these bridges, generate large amounts of data through sensor measurements, requiring data-driven approaches like deep learning (DL) for effective analysis. However, feature extraction from time-domain vibration response signals poses challenges for DL methods. To address this, the study proposes utilizing signal processing techniques such as the multivariate empirical mode decomposition (MEMD) and Wavelet transform (WT) to extract essential features for damage classification. The incorporation of MEMD and WT aims to overcome limitations and process nonstationary and nonlinear signals effectively. Three DL techniques, long-short-term memory (LSTM), one dimensional convolutional neural network (1D-CNN), multi-layer perceptron (MLP) are tuned and applied to Structural Health Monitoring of Tianjin Yonghe Bridge (located in China) as a real-world case study, in order to detect its condition by Deep signal anomaly detection and identify types of the damage. A powerful meta-heuristic algorithm called Observer-Teacher-Learner-Based Optimization, is used to optimize both hyperparameters and architecture of each DL models. The results demonstrate that the optimally tuned DLs are successful in identifying types of damage, as well as the condition of the structure, for the Tianjin Yonghe Bridge. The average accuracy values are obtained as 98.13, 97.96, and 97.79 for 1D-CNN, LSTM, and MLP, respectively. Such optimally tuned DLs are evaluated as effective solutions for detecting damage on large-scale bridges by extracting statistical time-domain and time–frequency domain features using the WT and MEMD.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3