Progress of the ECHo SDR Readout Hardware for Multiplexed MMCs

Author:

Gartmann R.ORCID,Karcher N.,Gebauer R.,Krömer O.,Sander O.

Abstract

AbstractThe electron capture in $$^{163}$$ 163 Holmium (ECHo) experiment seeks to achieve sub-eV sensitivity of the electron neutrino mass through calorimetric decay spectroscopy of $$^{163}$$ 163 Ho in large arrays of cryogenic magnetic microcalorimeters (MMCs). Microwave SQUID multiplexing serves to efficiently increase the number of readout channels, thus calorimeters per array and ultimately per cryostat. A corresponding frequency multiplexing room temperature software-defined radio (SDR) system is in development to enable the readout of this increased number of MMCs per cable. The SDR consists of a custom FPGA platform that provides signal generation and analysis capabilities, as well as tailored signal conversion and analog conditioning front end electronics that enable the room-temperature-to-cryogenic interface. Ultimately, the system will read out 400 multiplexer channels with double pixel detectors through a bandwidth of 4 GHz (IEEE C band). As high-resolution data converters are limited in sample rate, the C-band is split into five sub-bands using a two-stage mixing method. In this contribution, a prototype of the heterodyne RF design is presented. It comprises one of the five 800 MHz sub-bands for a target frequency range between 4 and 8 GHz. Furthermore, the second version of the A/D converter stage is presented, capable of generating and digitizing up to five complex basebands using 1 GSs$$^{-1}$$ - 1 converters, the reference clocks and a flux-ramp signal. We will show first results of their single and combined characterization in the lab. The current state of the prototype hardware enables preliminary measurements, only limited in bandwidth and with slightly higher noise. Potential improvements could be derived and will be implemented in the full bandwidth, 5-sub-band RF PCB design.

Funder

Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3