Abstract
AbstractForage sorghum (Sorghum bicolor (L.) Moench) is a wildly cultivated C4 cereal crop in many geographical regions and differs among germplasms in a number of important physiological traits. Lignin is a complex heteropolymer found in plant cell walls that adversely affects economic and environmental benefits of the crop. To understand the genetic basis, we re-sequenced the genomes of 206 sorghum accessions collected around the globe and identified 14,570,430 SNPs and 1,967,033 indels. Based on the SNP markers, we characterized the population structure and identified loci underlying lignin content by genome-wide association studies (GWAS). Analysis of the genetic relationships among the accessions revealed a more diverse spread of sorghum accessions and breeding lines from Asia, America, and their genetically improved variety, but a limited genetic diversity in the European accessions. These findings add new perspectives to the historical processes of crop diffusion within and across agroclimatic zones of America, Asia, and Europe. GWAS revealed 9 quantitative trait loci (QTLs) for lignin content, harboring 184 genes. These genes were significantly enriched into 7 major gene ontology (GO) terms involved in plant-type cell wall organization or bioenergy. The alleles of 9 QTLs in the 206 accessions were geographically distributed. The findings provide us with an understanding of the origin and spread of haplotypes linked to lignin content. The findings will allow improvements to feed quality and adaptation to stresses in sorghum, through the rapid increase of genetic gains for lignin content.
Funder
China Agriculture Research System
Biological Breeding Project of Shanxi Academy of Agricultural Sciences
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Genetics,Agronomy and Crop Science,Molecular Biology,Biotechnology
Reference46 articles.
1. Bouchet S, Pot D, Deu M, Rami JF, Billot C, Perrier X, Rivallan R, Gardes L, Xia L, Wenzl P, Kilian A, Glaszmann JC (2012) Genetic structure, linkage disequilibrium and signature of selection in Sorghum: lessons from physically anchored DarT markers. PLoS One 7:e33470
2. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635
3. Buxton DR, Casler MD (1993) Environmental and genetic effects on cell wall composition and digestibility. In: Jung HG, Buxton DR, Hatfield RD, Ralph J (eds) Forage cell wall structure and digestibility. ASA-CSA-SSSA, Madison, pp 685–714
4. Buxton DR, Redfearn DD (1997) Plant limitations to fiber digestion and utilization. J Nutr 127:814S–818S
5. Casa AM, Mitchell SE, Jensen J, Hamblin MT, Paterson AH, Aquadro CF, Kresovich S (2006) Evidence for a selective sweep on chromosome 1 of cultivated sorghum. Crop Sci 46:S27–S40
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献