Accelerating gene discovery in climate‐resilient and nutrient‐rich major and minor millets through genome‐wide association studies: Progress and prospects

Author:

Vellaichamy Gandhimeyyan Renganathan12ORCID,Chockalingam Vanniarajan2,Muthurajan Raveendran3,Raman Renuka12ORCID

Affiliation:

1. Department of Biotechnology, Centre of Excellence for Innovations, Agricultural College and Research Institute Tamil Nadu Agricultural University Madurai India

2. Department of Plant Breeding and Genetics, Agricultural College and Research Institute Tamil Nadu Agricultural University Madurai India

3. Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology Tamil Nadu Agricultural University Coimbatore India

Abstract

AbstractMillets are known for their resilience and nutritional benefits and hence believed to have a promising role in ensuring food and nutritional security under changing climatic conditions. Research on millets has intensified in recent years, especially in dissecting the genetic components of yield, stress tolerance and nutritional quality traits. Recent advances in next‐generation sequencing, bioinformatics and associated statistical procedures for genome‐wide association studies (GWAS) have provided wide opportunities to resolve the genetic complexity of polygenic traits by measuring historical and evolutionary recombination events in the natural population(s). During the past decade, GWAS has been successfully employed to identify key genes controlling growth, development, stress tolerance, nutrient use efficiency and nutritional quality traits in sorghum, pearl millet, foxtail millet and finger millet. However, progress in other minor millets is still in its infancy. Genetic dissection of these complex traits in millets may pave the way for genetic alteration of climate resilience, photosynthesis and nutrient accumulation in rice and wheat. In this review, progress in GWAS analysis in detecting QTLs underlying complex traits in sorghum and other millets is highlighted.

Publisher

Wiley

Subject

Plant Science,Genetics,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sorghum and Millets;Cereals and Nutraceuticals;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3