Introgression of the RppQ gene from field corn improves southern rust resistance in sweet corn

Author:

Zhang Nan,Qi Xitao,Li Xiaofeng,Li Guangyu,Li Gaoke,Hu Jianguang

Abstract

AbstractSouthern rust, one of the most destructive foliar diseases of sweet corn (Zea mays convar. saccharata var. rugosa), is caused by Puccinia polysora Underw. and leads to enormous yield losses and reduced quality of sweet corn in China. Utilization of resistance genes is an effective and environmentally friendly strategy for improving southern rust resistance of sweet corn. However, improvement is hampered by a lack of resistance genes in Chinese sweet corn germplasm. In this study, we introgress the southern rust resistance gene RppQ from Qi319, an inbred line of southern rust–resistant field corn, into four elite sweet corn inbred lines (1401, 1413, 1434, and 1445) using marker-assisted backcross breeding. These are parental inbred lines of four popular sweet corn varieties: Yuetian 28, Yuetian 13, Yuetian 26, and Yuetian 27. We developed five RppQ-based markers (M0607, M0801, M0903, M3301, and M3402) and employed these markers for foreground selection; 92.3 to 97.9% of the recurrent parent genomes were recovered following three or four rounds of backcrossing. The four newly developed sweet corn lines all showed significant improvement of southern rust resistance compared with their respective parent lines. Meanwhile, there was no significant difference in phenotypic data for agronomic traits. In addition, reconstituted hybrids derived from the converted lines retained resistance to southern rust, while other agronomic traits and sugar content remained unchanged. Our study provides an example of successful development of southern rust–resistant sweet corn using a resistance gene from field corn.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Agronomy and Crop Science,Molecular Biology,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3