Abstract
Abstract
Background
Pumpkins (Cucurbita moschata; Cucurbitaceae) are valued for their fruits and seeds and are rich in nutrients. Carotenoids and sugar contents, as main feature of pumpkin pulp, are used to determine the fruit quality.
Results
Two pumpkin germplasms, CMO-X and CMO-E, were analyzed regarding the essential quality traits such as dry weight, soluble solids, organic acids, carotenoids and sugar contents. For the comparison of fruit development in these two germplasms, fruit transcriptome was analyzed at 5 different developmental stages from 0 d to 40 d in a time course manner. Putative pathways for carotenoids biosynthesis and sucrose metabolism were developed in C. moschata fruit and homologs were identified for each key gene involved in the pathways. Gene expression data was found consistent with the accumulation of metabolites across developmental stages and also between two germplasms. PSY, PDS, ZEP, CRTISO and SUS, SPS, HK, FK were found highly correlated with the accumulation of carotenoids and sucrose metabolites, respectively, at different growth stages of C. moschata as shown by whole transcriptomic analysis. The results of qRT-PCR analysis further confirmed the association of these genes.
Conclusion
Developmental regulation of the genes associated with the metabolite accumulation can be considered as an important factor for the determination of C. moschata fruit quality. This research will facilitate the investigation of metabolic profiles in other cultivars.
Funder
Guangdong Academy of Agricultural Sciences Foundation of the Dean Project
National Key Research and Development Project
Modern Agricultural technology system in Guangdong Province
Guangzhou Science and Technology Foundation
Publisher
Springer Science and Business Media LLC
Reference62 articles.
1. Ferriol M, Picó B. In: Vegetables I, editor. Pumpkin and winter squash. New York: Springer New York; 2008. p. 317–49. https://doi.org/10.1007/978-0-387-30443-4_10.
2. Dinu M, Soare R, Hoza G, Becherescu AD. Biochemical composition of some local pumpkin population. Agric Agric Sci Procedia. 2016;10:185–91.
3. Dhiman AK, Kd S, Attri S. Functional constituents and processing of pumpkin. J Food Sci Technol. 2009;46:411–7.
4. Yadav M, Jain S, Tomar R, Prasad GBKS, Yadav H. Medicinal and biological potential of pumpkin: an updated review. Nutr Res Rev. 2010;23:184–90.
5. Isutsa DK, Mallowa SO. Increasing leaf harvest intensity enhances edible leaf vegetable yields and decreases mature fruit yields in multi-purpose pumpkin. J Agric Biol Sci. 2013;8:610–5 www.arpnjournals.com.
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献