Enhancing fracture-network characterization and discrete-fracture-network simulation with high-resolution surveys using unmanned aerial vehicles

Author:

Akara Mahawa Essa Mabossani,Reeves Donald M.,Parashar Rishi

Abstract

Abstract A workflow is presented that integrates unmanned aerial vehicle (UAV) imagery with discrete fracture network (DFN) geometric characterization and quantification of fluid flow. The DFN analysis allows for reliable characterization and reproduction of the most relevant features of fracture networks, including: identification of orientation sets and their characteristics (mean orientation, dispersion, and prior probability); scale invariance in distributions of fracture length and spatial location/clustering; and the distribution of aperture values used to compute network-scale equivalent permeability. A two-dimensional DFN-generation approach honors field data by explicitly reproducing observed multi-scale fracture clustering using a multiplicative cascade process and power law distribution of fracture length. The influence of aperture on network-scale equivalent permeability is investigated using comparisons between a sublinear aperture-to-length relationship and constant aperture. To assess the applicability of the developed methodology, DFN flow simulations are calibrated to pumping test data. Results suggest that even at small scales, UAV surveys capture the essential geometrical properties required for fluid flow characterization. Both the constant and sublinear aperture scaling approaches provide good matches to the pumping test results with only minimal calibration, indicating that the reproduced networks sufficiently capture the geometric and connectivity properties characteristic of the granitic rocks at the study site. The sublinear aperture scaling case honors the directions of dominant fractures that play a critical role in connecting fracture clusters and provides a realistic representation of network permeability.

Funder

Western Michigan University

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3