Particle size distribution (PSD) estimation using unmanned aerial vehicle (UAV) photogrammetry for rockfill shear strength characterization

Author:

Arrieta MarcoORCID,Zhang Zong-Xian

Abstract

AbstractThe strength of rockfills and waste materials is significantly influenced by their particle size distribution (PSD). For large waste rockfills, PSD is fundamental to determine the shear behavior. Traditionally, PSD for rockfill, used in materials like coarse-grained aggregates, has been obtained through physical sieving. However, the particle sizes in hard rockfills can vary significantly from small particles (< 20 cm diameter) to large blocks or boulders over 100 cm, with the maximum size limited by the in situ ground conditions and blasting performance. Essentially, the sieving process is impractical, considering the scale of the mine waste dumps and the time required. Therefore, in this study, a workflow using digital detection to estimate the PSD is presented, aiming to quantify the waste dump shear strength using Barton–Kjaernsli empirical criterion. PSD from UAV is validated using manual field measurements of individual boulders. The error for coarse characteristic size prediction ranges within ± 4 mm, and the increase in the data collection frequency, area covered, and resolution of fragmentation measurement for rockfills and waste dumps using UAV allows to improve the statistical reliability of the PSD and fragmentation measurement.

Funder

University of Oulu

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3