Review of discrete fracture network characterization for geothermal energy extraction

Author:

Medici Giacomo,Ling Fanlin,Shang Junlong

Abstract

Geothermal reservoirs are highly anisotropic and heterogeneous, and thus require a variety of structural geology, geomechanical, remote sensing, geophysical and hydraulic techniques to inform Discrete Fracture Network flow models. Following the Paris Agreement on reduction of carbon emissions, such reservoirs have received more attention and new techniques that support Discrete Fracture Network models were developed. A comprehensive review is therefore needed to merge innovative and traditional technical approaches into a coherent framework to enhance the extraction of geothermal energy from the deep subsurface. Traditionally, statistics extracted from structural scanlines and unmanned aerial vehicle surveys on analogues represent optimum ways to constrain the length of joints, bedding planes, and faults, thereby generating a model of the network of fractures. Combining borehole images with seismic attributes has also proven to be an excellent approach that supports the stochastic generation of Discrete Fracture Network models by detecting the orientation, density, and dominant trends of the fractures in the reservoirs. However, to move forward to flow modelling, computation of transmissivities from pumping tests, and the determination of hydraulically active fractures allow the computation of the hydraulic aperture in permeable sedimentary rocks. The latter parameter is fundamental to simulating flow in a network of discrete fractures. The mechanical aperture can also be estimated based on the characterization of geomechanical parameters (Poisson’s ratio, and Young’s modulus) in Hot Dry Rocks of igneous-metamorphic origin. Compared with previous review studies, this paper will be the first to describe all the geological and hydro-geophysical techniques that inform Discrete Fracture Network development in geothermal frameworks. We therefore envisage that this paper represents a useful and holistic guide for future projects on preparing DFN models.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3