Evolution of fluid redox in a fault zone of the Pic de Port Vieux thrust in the Pyrenees Axial Zone (Spain)

Author:

Charpentier DelphineORCID,Milesi GaétanORCID,Labaume Pierre,Abd Elmola AhmedORCID,Buatier Martine,Lanari Pierre,Muñoz Manuel

Abstract

Abstract. In mountain ranges, crustal-scale faults localize multiple episodes of deformation. It is therefore common to observe current or past geothermal systems along these structures. Understanding the fluid circulation channelized in fault zones is essential to characterize the thermochemical evolution of associated hydrothermal systems. We present a study of a palaeo-system of the Pic de Port Vieux thrust fault. This fault is a second-order thrust associated with the Gavarnie thrust in the Axial Zone of the Pyrenees. The study focused on phyllosilicates which permit the constraint of the evolution of temperature and redox of fluids at the scale of the fault system. Combined X-ray absorption near-edge structure (XANES) spectroscopy and electron probe microanalysis (EPMA) on synkinematic chlorite, closely linked to microstructural observations, were performed in both the core and damage zones of the fault zone. Regardless of the microstructural position, chlorite from the damage zone contains iron and magnesium (Fetotal / (Fetotal + Mg) about 0.4), with Fe3+ accounting for about 30 % of the total iron. Chlorite in the core zone is enriched in total iron, but individual Fe3+/Fetotal ratios range from 15 % to 40 %, depending on the microstructural position of the grain. Homogeneous temperature conditions about 280–290 °C have been obtained by chlorite thermometry. A scenario is proposed for the evolution of fluid–rock interaction conditions at the scale of the fault zone. It involves the circulation of a single hydrothermal fluid with homogeneous temperature but several redox properties. A highly reducing fluid evolves due to redox reactions involving progressive dissolution of hematite, accompanied by crystallization of Fe2+-rich and Fe3+-rich chlorite in the core zone. This study shows the importance of determining the redox state of iron in chlorite to calculate their temperature of formations and to consider the fluid evolution at the scale of a fault.

Funder

European Synchrotron Radiation Facility

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3