Abstract
AbstractThis study investigates the sandpack displacement of low viscosity oil (1.68 cP) by brine and aqueous solutions of associative polymers. Polymer flooding has been thoroughly investigated in many laboratory and field tests. Polymer flooding is one of the most widely used enhanced oil recovery (EOR) methods. The method of polymer flooding is not used for development of oil fields with gas caps, fractured reservoirs, high permeability and active bottom-water drive. In the application of polymer flooding, coefficient of oil recovery is increased by 3–10%. Hydrolyzed polymers undergo the significant thermal and chemical degradation at high temperature and salinity. In recent years, researchers have turned their attention to associative polymers. An application of associative polymers to withstand degradation in high temperature and high salinity conditions can enhance oil recovery in high heterogeneous fields. This article presents the results of studies of oil displacement by associative polymers in a two-layer core model. In laboratory studies, the core selected from a sandy reservoir of the South Turgay Basin of the Republic of Kazakhstan was used. Solutions of the following polymers were studied: hydrolyzed polyacrylamide (HPAM) and associative polymer. The physicochemical conditions of the experiments corresponded to the reservoir conditions of the sand layer of the South Turgay Basin: temperature of 82 °C and the salinity of the brine 92,000 ppm. Experiments revealed that the associative polymer is more stable in simulated reservoir conditions than the HPAM polymer. Associative polymer flooding was recommended for pilot testing at the reservoir of the South Turgay Basin.
Publisher
Springer Science and Business Media LLC
Subject
General Energy,Geotechnical Engineering and Engineering Geology
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献