Evaluation of Innovative Associative Polymers for Low Concentration Polymer Flooding

Author:

Alexis Dennis1,Varadarajan Dwarakanath1,Kim Do Hoon1,Winslow Greg1,Malik Taimur1

Affiliation:

1. Chevron Energy Technology Company

Abstract

Abstract Performance of current synthetic EOR polymers is primarily constrained by salinity, temperature and shear which restrict their application to low to moderate salinity, low to moderate temperature and relatively high permeability reservoirs. The primary goal of the current work is to qualify recently developed associative polymers (AP) for EOR applications as well as to study their behavior in porous media. We also compare their performance with conventional non-associative polymers. In this work, we present the evaluation of several associative polymers. Two broad types of associative polymers were tested, one with a partially hydrolyzed poly acrylamide (HPAM) backbone and the other with a sulfonated HPAM backbone. The concentrations of the tested polymer vary between 75 ppm and 1000 ppm. We demonstrate the applicability of these innovative AP's through the carefully controlled lab experiments: (1) Corefloods in sandpacks to compare the sweep behaviors with conventional HPAM's. (2) Single phase flooding experiments are carried out in consolidated outcrop rocks to identify optimal polymer concentrations to achieve the desired in-situ resistance. (3) One dimensional displacement experiments with 8 cP and 90 cP oil are carried out in both unconsolidated and consolidated rocks at different temperatures to validate improved oil recovery. Results generally indicate that associative polymers require lower polymer concentration to generate high resistance factors in porous media and have stable long term injectivity behavior in high permeability rocks (>1D). Associative polymers with HPAM backbone have better filterability and injectivity in comparison to those with HPAM sulfonated backbone in low permeability(<300mD) rocks. Improved oil recovery in high permeability rocks compare well with conventional HPAM and sulfonated HPAM polymers. Based on the laboratory results, we are able to establish the selection baseline for associative polymers in different permeability rocks, salinities and temperatures. Such information can be used to select and screen the appropriate associative polymers, resulting in extending their applicability envelope in EOR.

Publisher

SPE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3