New Facet in Viscometry of Charged Associating Polymer Systems in Dilute Solutions

Author:

Gosteva Anna1ORCID,Gubarev Alexander S.2ORCID,Dommes Olga1ORCID,Okatova Olga1ORCID,Pavlov Georges M.1ORCID

Affiliation:

1. Institute of Macromolecular Compounds, Russian Academy of Sciences Bolshoi pr. 31, 199004 Saint Petersburg, Russia

2. Department of Molecular Biophysics and Polymer Physics, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia

Abstract

The peculiarities of viscosity data treatment for two series of polymer systems exhibiting associative properties: brush-like amphiphilic copolymers—charged alkylated N-methyl-N-vinylacetamide and N-methyl-N-vinylamine copolymer (MVAA-co-MVACnH2n+1) and charged chains of sodium polystyrene-4-sulfonate (PSSNa) in large-scale molecular masses (MM) and in extreme-scale of the ionic strength of solutions were considered in this study. The interest in amphiphilic macromolecular systems is explained by the fact that they are considered as micellar-forming structures in aqueous solutions, and these structures are able to carry hydrophobic biologically active compounds. In the case of appearing the hydrophobic interactions, attention was paid to discussing convenient ways to extract the correct value of intrinsic viscosity η from the combined analysis of Kraemer and Huggins plots, which were considered as twin plots. Systems and situations were demonstrated where intrachain hydrophobic interactions occurred. The obtained data were discussed in terms of lnηr vs. cη plots as well as in terms of normalized scaling relationships where ηr was the relative viscosity of the polymer solution. The first plot allowed for the detection and calibration of hydrophobic interactions in polymer chains, while the second plot allowed for the monitoring of the change in the size of charged chains depending on the ionic strength of solutions.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3