Study on the practice of downhole dewaxing by in situ generated heat

Author:

Mao Xinyu,Li Nianyin,Chen Fei,Kang Jia,Guo Qian,Han Peihong

Abstract

AbstractIn situ heat systems are a technology that effectively solves paraffin deposition and improves oil recovery. Generally, the oxidation–reduction reaction of sodium nitrite and ammonium chloride generates a large amount of heat to promote the melting of paraffin. An in situ heat system combined with an acid-resistant fracturing fluid system can form an in situ heat fracturing fluid system, which solves the problem of the poor reformation effect caused by cold damage during the fracturing process of low-pressure and high-pour-point oil reservoirs. In this paper, with the goals of system heating up to 50 °C, a low H+ concentration, a high exotherm, and reduction of the toxic and harmful by-product NOX, the preferred in situ heat system was found to comprise 1.6 mol/L ammonium chloride, 1.0 mol/L sodium nitrite, and 0.8% hydrochloric acid. The effect of five factors on the heat production of the reaction was studied experimentally, and a reaction kinetic equation for the in situ heat system was proposed based on the results. The results showed that increasing the concentration of the reactants and lowering the ambient temperature produced more heat. The in situ heat system was used to conduct a crude oil cold damage elimination experiment, and the results of the removal experiments verified that the system could effectively but not completely reduce the cold damage. Overall, the in situ heat fracturing fluid system formed by the preferred in situ heat system combined with an acid-resistant fracturing fluid system could avoid cold damage in the formation during construction and increase the output.

Funder

the National Science and Technology Major Project and National Natural Science Foundation of China Petrochemical Joint Fund Project

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3