In-Situ Steam Generation A New Technology Application for Heavy Oil Production

Author:

Al-Nakhli Ayman R.1,Sukkar Luai A.1,Arukhe James1,Mulhem Abddulrahman1,Mohannad Abdelaziz1,Ayub Mohammad1,Arifin Muhamad2

Affiliation:

1. Saudi Aramco

2. Schlumberger

Abstract

Abstract The recovery of unconventional oil such as heavy oil is receiving great interest as the world oil demand is increasing along with relatively high oil prices. Producing such high viscosity oil is complex and challenging, which usually require thermal techniques. Thermal recovery methods are widely used to recover the heavy oil and bitumen basically by thermally reducing oil viscosity, improving the mobility ratio and enhancing the heavy oil displacement. In response to the recent effort of leveraging heavy oil and tar plays in Saudi Arabia, Saudi Aramco has launched a new thermochemical research program to tackle challenges associated with lowering oil viscosity to improve well productivity and the overall reservoir depletion efficiency. One of the promising new technologies is enabling in-situ steam generation by chemical reaction (EXO-Clean) to mobilize the low API crude oil or tar reserves. In this paper a new steam flooding methodology will be introduced and compared with existing technologies. Steam will be generated in-situ by chemical reactions, which will have better efficiency and lower cost compared to conventional steam injection methods. Simulation study, lab experiments, and field treatment showed great promises of the technology. The developed EXO-Clean treatment relates to in-situ steam generation to maximize heat delivery efficiency of steam into the reservoir and to minimize heat losses due to under and/or over burdens and non-producing areas. The treatment consists of injecting exothermic reaction-components that react downhole and generate in-situ steam and nitrogen gas. The generated in-situ steam and gas can be applied to recover deep heavy oil, and tight oil reservoirs, which cannot be recovered with traditional steam injection methods.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3