Experimental Study on In-Situ Foam Fracturing Fluid Stabilized by Novel Microbial Polysaccharide

Author:

Zhou Jie1,Yang Zhaozhong1,Zhu Jingyi2

Affiliation:

1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan, P. R. China

2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichua

Abstract

Abstract While high working pressure and complex procedure restrict application of conventional foam fracturing, in-situ foam can overcome the limitations because it is liquid while pumping, reducing flow friction and dosage of special equipment. It gradually foams in the formation with large amount of heat released and pressure increased, improving flowback performance. Thus, this study developed an in-situ foam fracturing fluid stabilized by a novel microbial polysaccharide called diutan gum, evaluated its performance, and investigated its proppant suspension mechanism at high temperature. First, based on the foam comprehensive value, the polysaccharide stabilizer and foaming agent systems of N2 foam and CO2 foam were selected separately. Second, the self-generated N2 systems and self-generated CO2 systems were screened in terms of gas production efficiency and rate. Third, on the premise of meeting compatibility, the selected foam systems and self-generated gas systems were combined, and necessary additives were introduced to prepare in-situ N2 and in-situ CO2 foam fracturing fluid systems, respectively. The stability and foaming ability of in-situ foams were evaluated at high temperature, and the optimal ones were selected. Then, the proppant suspension performance, heat and shear resistance, and viscoelasticity of the optimal ones were evaluated at high temperature, and this study tailored a method for evaluating proppant suspension performance of the in-situ foam fracturing fluid due to its difference from the conventional ones. Finally, based on experimental data and rules, the proppant suspension mechanism of in-situ foam fracturing fluid at high temperature was revealed. The combination of diutan gum and AOS exhibited outstanding ability in enhancing the foam comprehensive value of both N2 and CO2 foam, and two kinds of CO2 foam and N2 foam systems with higher comprehensive values were selected respectively. The self-generated nitrogen and carbon dioxide systems with the highest gas production rate and efficiency were respectively selected, with the highest gas production efficiency reaching 95.9%. Thanks to these two excellent components, the in-situ N2foam volume reached 518mL which was 26 times of the base fluid of 20mL and remained 480mL within 90 minutes even at 70°C, demonstrating excellent foaming ability and foam stability. However, the stability of the in-situ CO2 foam was poor, as the foam volume dropped from 515mL to 250mL in just about 13 minutes. The in-situ N2 foam fracturing fluid obtained remarkable proppant suspension performance that with only 20mL of base fluid, it fully suspended 25mL of 70/140 mesh ceramic proppant for up to 120min, achieving proppant volume fraction as high as 55.6%. The in-situ CO2 foam could not even suspend 5mL of proppant, so it was eliminated and the in-situ N2 foam fracturing fluid was determined as the optimal system whose rheological properties was also extraordinary. After continuous shear for 2h at 70° and 170s−1, it maintained a viscosity of 59.4mPa·s, and it exhibited brilliant elasticity that its storage modulus was always greater than the loss modulus, ensuring its excellent proppant suspension performance. Ultimately, its proppant suspension mechanism was revealed in four stages. The results suggest that the in-situ foam fracturing fluid stabilized by diutan gum obtains promising applications and is supposed to be further studied.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3