Flexible modelling of spatial variation in agricultural field trials with the R package INLA

Author:

Selle Maria LieORCID,Steinsland Ingelin,Hickey John M.,Gorjanc Gregor

Abstract

Abstract Key message Established spatial models improve the analysis of agricultural field trials with or without genomic data and can be fitted with the open-source R package INLA. Abstract The objective of this paper was to fit different established spatial models for analysing agricultural field trials using the open-source R package INLA. Spatial variation is common in field trials, and accounting for it increases the accuracy of estimated genetic effects. However, this is still hindered by the lack of available software implementations. We compare some established spatial models and show possibilities for flexible modelling with respect to field trial design and joint modelling over multiple years and locations. We use a Bayesian framework and for statistical inference the integrated nested Laplace approximations (INLA) implemented in the R package INLA. The spatial models we use are the well-known independent row and column effects, separable first-order autoregressive ($$\mathrm{AR1} \otimes \mathrm{AR1}$$ AR 1 AR 1 ) models and a Gaussian random field (Matérn) model that is approximated via the stochastic partial differential equation approach. The Matérn model can accommodate flexible field trial designs and yields interpretable parameters. We test the models in a simulation study imitating a wheat breeding programme with different levels of spatial variation, with and without genome-wide markers and with combining data over two locations, modelling spatial and genetic effects jointly. The results show comparable predictive performance for both the $$\mathrm{AR1} \otimes \mathrm{AR1}$$ AR 1 AR 1 and the Matérn models. We also present an example of fitting the models to a real wheat breeding data and simulated tree breeding data with the Nelder wheel design to show the flexibility of the Matérn model and the R package INLA.

Funder

The Research Council of Norway

The UK Biotechnology and Biological Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Agronomy and Crop Science,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3