Bayesian marker-based principal component ridge regression – a flexible multipurpose framework for quantitative genetics in wild study systems

Author:

Aspheim Janne C. H.,Aase KennethORCID,Bolstad Geir H.ORCID,Jensen HenrikORCID,Muff StefanieORCID

Abstract

AbstractAs larger genomic data sets become available for wild study populations, the need for flexible and efficient methods to estimate and predict quantitative genetic parameters, such as the adaptive potential and measures for genetic change, increases. Animal breeders have produced a wealth of methods, but wild study systems often face challenges due to larger effective population sizes, environmental heterogeneity and higher spatio-temporal variation. Here we adapt methods previously used for genomic prediction in animal breeding to the needs of wild study systems. The core idea is to approximate the breeding values as a linear combination of principal components (PCs), where the PC effects are shrunk with Bayesian ridge regression. Thanks to efficient implementation in a Bayesian framework using integrated nested Laplace approximations (INLA), it is possible to handle models that include several fixed and random effects in addition to the breeding values. Applications to a Norwegian house sparrow meta-population, as well as simulations, show that this method efficiently estimates the additive genetic variance and accurately predicts the breeding values. A major benefit of this modeling framework is computational efficiency at large sample sizes. The method therefore suits both current and future needs to analyze genomic data from wild study systems.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3