A 3D Radiomics-Based Artificial Neural Network Model for Benign Versus Malignant Vertebral Compression Fracture Classification in MRI

Author:

Chiari-Correia Natália S.ORCID,Nogueira-Barbosa Marcello H.ORCID,Chiari-Correia Rodolfo DiasORCID,Azevedo-Marques Paulo M.ORCID

Abstract

AbstractTo train an artificial neural network model using 3D radiomic features to differentiate benign from malignant vertebral compression fractures (VCFs) on MRI. This retrospective study analyzed sagittal T1-weighted lumbar spine MRIs from 91 patients (average age of 64.24 ± 11.75 years) diagnosed with benign or malignant VCFs from 2010 to 2019, of them 47 (51.6%) had benign VCFs and 44 (48.4%) had malignant VCFs. The lumbar fractures were three-dimensionally segmented and had their radiomic features extracted and selected with the wrapper method. The training set consisted of 100 fractured vertebral bodies from 61 patients (average age of 63.2 ± 12.5 years), and the test set was comprised of 30 fractured vertebral bodies from 30 patients (average age of 66.4 ± 9.9 years). Classification was performed with the multilayer perceptron neural network with a back-propagation algorithm. To validate the model, the tenfold cross-validation technique and an independent test set (holdout) were used. The performance of the model was evaluated using the average with a 95% confidence interval for the ROC AUC, accuracy, sensitivity, and specificity (considering the threshold = 0.5). In the internal validation test, the best model reached a ROC AUC of 0.98, an accuracy of 95% (95/100), a sensitivity of 93.5% (43/46), and specificity of 96.3% (52/54). In the validation with independent test set, the model achieved a ROC AUC of 0.97, an accuracy of 93.3% (28/30), a sensitivity of 93.3% (14/15), and a specificity of 93.3% (14/15). The model proposed in this study using radiomic features could differentiate benign from malignant vertebral compression fractures with excellent performance and is promising as an aid to radiologists in the characterization of VCFs.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3