Automatic diagnosis of pediatric supracondylar humerus fractures using radiomics-based machine learning

Author:

Yao Wuyi1ORCID,Wang Yu1,Zhao Xiaobin2,He Man3,Wang Qian4,Liu Hanjie1,Zhao Jingxin1ORCID

Affiliation:

1. Department of Orthopedics, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, PR China

2. Department of Radiology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, PR China

3. Department of Rehabilitation, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, PR China

4. Department of Orthopedics, Tianjin Beichen Hospital, Tianjin, PR China.

Abstract

The aim of this study was to construct a classification model for the automatic diagnosis of pediatric supracondylar humerus fractures using radiomics-based machine learning. We retrospectively collected elbow joint Radiographs of children aged 3 to 14 years and manually delineated regions of interest (ROI) using ITK-SNAP. Radiomics features were extracted using pyradiomics, a python-based feature extraction tool. T-tests and the least absolute shrinkage and selection operator (LASSO) algorithm were used to further select the most valuable radiomics features. A logistic regression (LR) model was trained, with an 8:2 split into training and testing sets, and 5-fold cross-validation was performed on the training set. The diagnostic performance of the model was evaluated using receiver operating characteristic curves (ROC) on the testing set. A total of 411 fracture samples and 190 normal samples were included. 1561 features were extracted from each ROI. After dimensionality reduction screening, 40 and 94 features with the most diagnostic value were selected for further classification modeling in anteroposterior and lateral elbow radiographs. The area under the curve (AUC) of anteroposterior and lateral elbow radiographs is 0.65 and 0.72. Radiomics can extract and select the most valuable features from a large number of image features. Supervised machine-learning models built using these features can be used for the diagnosis of pediatric supracondylar humerus fractures.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3