Abstract
Abstract
For the in-situ nondestructive fat quantification of fresh tuna meat, an original lightweight (5.7 kg) hand-held sensor that consists of a planar radio-frequency coil and a single-sided magnetic circuit was developed as a subunit of a time-domain proton magnetic resonance (MR) scanner system. The investigation depth of the sensor unit is 12 mm, which is sufficient to probe the meat section beneath thick skin with scales and the underlying subcutaneous fat layer of large fish such as tuna. The scanner was successfully applied in a laboratory to a fillet of a bluefin tuna (Thunnus thynnus) to measure meat sections 12 mm beneath the skin. The required measurement time was 100 s for each section. The results of MR scan at 11 locations on the fillet were compared with those of conventional destructive food analysis. Reasonable agreement with an error (root-mean-square residual) of as small as 1.8 wt% was obtained for fat quantification. The time-domain MR relaxometry for the same tuna fillet also allowed lean meat quantification with a small root-mean-square residual of 6.7 wt%.
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Safety, Risk, Reliability and Quality,General Chemical Engineering,Food Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献