High temporal resolution of hydrogen peroxide (H2O2) dynamics during heat stress does not support a causative role in coral bleaching

Author:

Schlotheuber MarlenORCID,Voolstra Christian R.ORCID,de Beer DirkORCID,Camp Emma F.ORCID,Klatt Judith M.ORCID,Ghilardi MattiaORCID,Neumüller KatharinaORCID,Ousley SaraORCID,Bejarano SoniaORCID

Abstract

AbstractHuman-induced climate change is causing ocean warming that triggers the breakdown of the coral–algal symbiosis. The proximate cause of this phenomenon, known as coral bleaching, is commonly attributed to the overproduction of reactive oxygen species (ROS) by the thermally stressed photosynthetic algal symbionts. However, direct evidence that algal ROS production (e.g., in the form of H2O2) and coral physiological stress are the ultimate cause of bleaching remains ambiguous. Here, we investigated the temporal dynamics of H2O2 and oxygen (O2) concentrations during thermally induced coral bleaching to disentangle cause from consequence. Microsensors at the tissue interface of Pocillopora damicornis measured H2O2 and O2 concentrations while exposing single nubbins to baseline temperatures (30 °C) and to minor (33 °C), moderate (36 °C), and high (39 °C) levels of acute heat stress using the Coral Bleaching Automated Stress System (CBASS). We show that a temporary decline in O2 concentration, accompanied by a declining photosynthetic efficiency and loss of Symbiodiniaceae and pigmentation, is the initial response to moderate thermal stress. This response was neither provoked nor followed by an increased H2O2 concentration at the coral tissue interface. A steady light-independent increase of H2O2 was only detected during high heat stress, resulting in the complete and permanent loss of photosynthetic activity. Our findings do not support a direct connection between algal photodamage and an increase in H2O2 concentration during thermally induced bleaching and suggest that more research on the function of H2O2 is warranted. This notion is further substantiated by the observation of an additional source of H2O2, likely oxidative bursts, that were common at the baseline temperature and under minor heat stress, while their occurrence decreased at moderate and high heat stress. Resolving the multifaceted and dynamic roles of H2O2 in coral bleaching is critical to better understand the response of the coral holobiont to thermal stress and identifying the processes underlying the breakdown of the coral–algal symbiosis.

Funder

Leibniz-Zentrum für Marine Tropenforschung

Deutsche Forschungsgemeinschaft

Intelligence Community Postdoctoral Research Fellowship Program

Universität Konstanz

Publisher

Springer Science and Business Media LLC

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3